Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta

40Citations
Citations of this article
122Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Alzheimer's disease is associated with amyloid-beta (Aβ)-induced microglia activation. This pro-inflammatory response promotes neuronal damage, and therapies are sought to limit microglial activation. Screening efforts to develop new pharmacological inhibitors require a robust in vitro cell system. Current models lack significant responses to Aβ, and their use in examining age-related neurodegenerative diseases is questionable. For example, the commonly used BV-2 microglial line was derived from embryonic mononuclear cells and its activation by various stimuli is limited. To this end, we have established a new immortalized microglial (IMG) cell line from adult murine brain. The objective of this study was to characterize Aβ-induced activation of IMG cells, and here, we demonstrate the ability of cannabinoids to significantly reduce this inflammatory response. Methods: Microglial cells derived from adult murine brain were immortalized via infection with the v-raf/v-myc retrovirus under conditions that selectively promote microglia growth. The presence or absence of markers CD11b and F4/80 (microglial), NeuN (neuronal), and GFAP (astrocytic) was assessed by immunofluorescence microscopy and western blotting. Using IMG and BV-2 cells, levels of pro- and anti-inflammatory transcripts in response to extracellular stimuli were determined by quantitative PCR (qPCR). Phagocytosis of fluorescent beads and fluorescein isothiocyanate (FITC)-labeled Aβ oligomers was assessed using flow cytometry and fluorescence microscopy. FITC-Aβ uptake was quantified using a fluorescence plate reader. The ability of cannabinoids to mitigate Aβ-induced expression of inducible nitric oxide synthase (iNOS) was evaluated. Results: IMG cells express the microglial markers CD11b and F4/80 but not NeuN or GFAP. Relative to BV-2 cells, IMG cells increased iNOS (>200-fold) and Arg-1 (>100-fold) in response to pro- and anti-inflammatory stimuli. IMG cells phagocytose foreign particles and Aβ oligomers, with the latter trafficked to phagolysosomes. Aβ-induced activation of IMG cells was suppressed by delta-9-tetrahydrocannabinol and the CB2-selective agonist JWH-015 in a time- and concentration-dependent manner. Conclusions: IMG cells recapitulate key features of microglial cell activation. As an example of their potential pharmacological use, cannabinoids were shown to reduce activation of Aβ-induced iNOS gene expression. IMG cells hold promising potential for drug screening, mechanistic studies, and functional investigations directed towards understanding how Aβ interacts with microglia.

Cite

CITATION STYLE

APA

McCarthy, R. C., Lu, D. Y., Alkhateeb, A., Gardeck, A. M., Lee, C. H., & Wessling-Resnick, M. (2016). Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. Journal of Neuroinflammation, 13(1). https://doi.org/10.1186/s12974-016-0484-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free