Microbicidal NO production is reliant on inducible NO synthase–mediated l-arginine metabolism in macrophages (MΦs). However, l-arginine supply can be restricted by arginase activity, resulting in inefficient NO output and inhibition of antimicrobial MΦ function. MΦs circumvent this by converting l-citrulline to l-arginine, thereby resupplying substrate for NO production. In this article, we define the metabolic signature of mycobacteria-infected murine MΦs supplied l-arginine, l-citrulline, or both amino acids. Using liquid chromatography–tandem mass spectrometry, we determined that l-arginine synthesized from l-citrulline was less effective as a substrate for arginase-mediated l-ornithine production compared with l-arginine directly imported from the extracellular milieu. Following Mycobacterium bovis bacillus Calmette–Guérin infection and costimulation with IFN-γ, we observed that MΦ arginase activity did not inhibit production of NO derived from l-citrulline, contrary to NO inhibition witnessed when MΦs were cultured in l-arginine. Furthermore, we found that arginase-expressing MΦs preferred l-citrulline over l-arginine for the promotion of antimycobacterial activity. We expect that defining the consequences of l-citrulline metabolism in MΦs will provide novel approaches for enhancing immunity, especially in the context of mycobacterial disease.
CITATION STYLE
Rapovy, S. M., Zhao, J., Bricker, R. L., Schmidt, S. M., Setchell, K. D. R., & Qualls, J. E. (2015). Differential Requirements for l -Citrulline and l -Arginine during Antimycobacterial Macrophage Activity. The Journal of Immunology, 195(7), 3293–3300. https://doi.org/10.4049/jimmunol.1500800
Mendeley helps you to discover research relevant for your work.