During the late 19th and very early 20th centuries widespread deforestation occurred across the Appalachian region, USA. However, since the early 20th century, land cover rapidly changed from predominantly agricultural land use (72%; 1909) to forest. West Virginia (WV) is now the USA's third most forested state by area (79%; 1989-present). It is well understood that land cover alterations feedback on climate with important implications for ecology, water resources, and watershed management. However, the spatiotemporal distribution of climatic changes during reforestation in WV remains unclear. To fill this knowledge gap, daily maximum temperature, minimum temperature, and precipitation data were acquired for eighteen observation sites with long periods of record (POR; ≥77 years). Results indicate an increasingly wet and temperate WV climate characterized by warming summertime minimum temperatures, cooling maximum temperatures year-round, and increased annual precipitation that accelerated during the second half (1959-2016) of the POR. Trends are elevation dependent and may be accelerating due to local to regional ecohydrological feedbacks including increasing forest age and density, changing forest species composition, and increasing globally averaged atmospheric moisture. Furthermore, results imply that excessive wetness may become the primary ecosystem stressor associated with climate change in the USA's rugged and flood prone Appalachian region. The Appalachian region's physiographic complexity and history of widespread land use changes makes climatic changes particularly dynamic. Therefore, mechanistic understanding of micro- to mesoscale climate changes is imperative to better inform decision makers and ensure preservation of the region's rich natural resources.
CITATION STYLE
Kutta, E., & Hubbart, J. (2019). Climatic trends of West Virginia: A representative appalachian microcosm. Water (Switzerland), 11(6). https://doi.org/10.3390/w11061117
Mendeley helps you to discover research relevant for your work.