Gacm: A graph attention capsule model for the registration of tls point clouds in the urban scene

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Point cloud registration is the foundation and key step for many vital applications, such as digital city, autonomous driving, passive positioning, and navigation. The difference of spatial objects and the structure complexity of object surfaces are the main challenges for the registration problem. In this paper, we propose a graph attention capsule model (named as GACM) for the efficient registration of terrestrial laser scanning (TLS) point cloud in the urban scene, which fuses graph attention convolution and a three-dimensional (3D) capsule network to extract local point cloud features and obtain 3D feature descriptors. These descriptors can take into account the differences of spatial structure and point density in objects and make the spatial features of ground objects more prominent. During the training progress, we used both matched points and non-matched points to train the model. In the test process of the registration, the points in the neighborhood of each keypoint were sent to the trained network, in order to obtain feature descriptors and calculate the rotation and translation matrix after constructing a K-dimensional (KD) tree and random sample consensus (RANSAC) algorithm. Experiments show that the proposed method achieves more efficient registration results and higher robustness than other frontier registration methods in the pairwise registration of point clouds.

Cite

CITATION STYLE

APA

Zou, J., Zhang, Z., Chen, D., Li, Q., Sun, L., Zhong, R., … Sha, J. (2021). Gacm: A graph attention capsule model for the registration of tls point clouds in the urban scene. Remote Sensing, 13(22). https://doi.org/10.3390/rs13224497

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free