Boson quantum error correction is an important means to realize quantum error correction information processing. In this paper, we consider the connection of a single-mode Gottesman-Kitaev-Preskill (GKP) code with a two-dimensional (2D) surface (surface-GKP code) on a triangular quadrilateral lattice. On the one hand, we use a Steane-type scheme with maximum likelihood estimation for surface-GKP code error correction. On the other hand, the minimum-weight perfect matching (MWPM) algorithm is used to decode surface-GKP codes. In the case where only the data GKP qubits are noisy, the threshold reaches σ ≈ 0.5 (p¯ ≈ 12.3 %). If the measurement is also noisy, the threshold is reached σ ≈ 0.25 (p¯ ≈ 10.02 %). More importantly, we introduce a neural network decoder. When the measurements in GKP error correction are noise-free, the threshold reaches σ ≈ 0.78 (p¯ ≈ 15.12 %). The threshold reaches σ ≈ 0.34 (p¯ ≈ 11.37 %) when all measurements are noisy. Through the above optimization method, multi-party quantum error correction will achieve a better guarantee effect in fault-tolerant quantum computing.
CITATION STYLE
Wang, H., Xue, Y., Qu, Y., Mu, X., & Ma, H. (2022). Multidimensional Bose quantum error correction based on neural network decoder. Npj Quantum Information, 8(1). https://doi.org/10.1038/s41534-022-00650-z
Mendeley helps you to discover research relevant for your work.