Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development

6Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cilia are conserved microtubule-based organelles that function as mechanical and chemical sensors in various cell types. By bioinformatic, genomic, and proteomic studies, more than 2000 proteins have been identified as cilium-associated proteins or putative ciliary proteins; these proteins are referred to as the ciliary proteome or the ciliome. However, little is known about the function of these numerous putative ciliary proteins in cilia. To identify the possible new functional proteins or pathways in cilia, we carried out a small-scale genetic screen targeting 54 putative ciliary genes by using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. We successfully constructed 54 zebrafish mutants, and 8 of them displayed microphthalmias. Three of these 8 genes encode proteins for protein transport, suggesting the important roles of protein transport in retinal development. In situ hybridization revealed that all these genes are expressed in zebrafish eyes. Furthermore, polo-like kinase 1 was required for ciliogenesis in neural tube. We uncovered the potential function of the ciliary genes for the retinal development of zebrafish.—Hu, R., Huang, W., Liu, J., Jin, M., Wu, Y., Li, J., Wang, J., Yu, Z., Wang, H., Cao, Y. Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development.

Author supplied keywords

Cite

CITATION STYLE

APA

Hu, R., Huang, W., Liu, J., Jin, M., Wu, Y., Li, J., … Cao, Y. (2019). Mutagenesis of putative ciliary genes with the CRISPR/Cas9 system in zebrafish identifies genes required for retinal development. FASEB Journal, 33(4), 5248–5256. https://doi.org/10.1096/fj.201802140R

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free