Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol

9Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Biochar-derived dissolved organic carbon (DOC), as the most important component of biochar, can be released on farmland, improving fertility and playing a role in soil amendment and remediation. The complexity of molecular structures and diversity of DOC compounds have influenced these functions to some extent. A sequential extract protocol consisting of water (25◦C), hot water (80◦C), and NaOH solution (0.05 M) was used to fully extract DOC compounds and gain a thorough understanding of the possible DOC components released from biochar. Rape straw (RS), apple tree branches (ATB), and pine sawdust (PS) were pyrolyzed at 300, 500, and 700◦C, respectively, to make nine distinct biochars. A TOC analyser, ultraviolet-visible spectroscopy (UV–vis), and excitation–emission fluorescence (EEM) spectrophotometer were used in conjunction with parallel factor analysis (PARAFAC) to determine the distribution of DOC content, the diversity of aromaticity, molecular weight characteristics and components of biochar-derived DOC. The results show that the relative distribution of water-extractable fractions ranged from 3.21 to 35.57%, with a low-aromaticity and extremely hydrophilic fulvic-acid-like compounds being found in the highest amounts (C2 and C3). The smallest amount of hot water-extractable components was produced from the release of small-molecule aliphatic compounds adsorbed on biochar and susceptible to migration loss once in a soil solution. More than half of the biochar-derived DOC was released in a NaOH solution, which primarily consisted of humic-acid-like compounds (C1), with higher molecular weights, more aromaticity, and lower bioavailability, according to the distribution of DOC in various extractants. In addition, the pyrolysis temperature and biomass type had a significant impact on the DOC properties released by biochar. As a result, the findings of this study showed that using a sequential extract protocol of water, hot water, and NaOH solution in combination with spectroscopic methods could successfully reveal the diversity of biochar-derived components, which could lead to new insights for the accurate assessment of potential environmental impacts and new directions for biochar applications.

Cite

CITATION STYLE

APA

Liu, H., Zhao, B., Zhang, X., Li, L., Zhao, Y., Li, Y., & Duan, K. (2022). Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol. Materials, 15(11). https://doi.org/10.3390/ma15113865

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free