Self-polymerized dopamine is a versatile coating material that has various oxygen and nitrogen functional groups. Here, we demonstrate the redox-active properties of self-polymerized dopamine on the surface of few-walled carbon nanotubes (FWNTs), which can be used as organic cathode materials for both Li- and Na-ion batteries. We reveal the multiple redox reactions between self-polymerized dopamine and electrolyte ions in the high voltage region from 2.5 to 4.1 V vs. Li using both density functional theory (DFT) calculations and electrochemical measurements. Free-standing and flexible hybrid electrodes are assembled using a vacuum filtration method, which have a 3D porous network structure consisting of polydopamine coated FWNTs. The hybrid electrodes exhibit gravimetric capacities of ∼133 mA h g-1 in Li-cells and ∼109 mA h g-1 in Na-cells utilizing double layer capacitance from FWNTs and multiple redox-reactions from polydopamine. The polydopamine itself within the hybrid film can store high gravimetric capacities of ∼235 mA h g-1 in Li-cells and ∼213 mA h g-1 in Na-cells. In addition, the hybrid electrodes show a high rate-performance and excellent cycling stability, suggesting that self-polymerized dopamine is a promising cathode material for organic rechargeable batteries.
CITATION STYLE
Liu, T., Kim, K. C., Lee, B., Chen, Z., Noda, S., Jang, S. S., & Lee, S. W. (2017). Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy and Environmental Science, 10(1), 205–215. https://doi.org/10.1039/c6ee02641a
Mendeley helps you to discover research relevant for your work.