Toxic effects of brake wear particles on epithelial lung cells in vitro

  • Gasser M
  • Riediker M
  • Mueller L
  • et al.
N/ACitations
Citations of this article
137Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. Results: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours (full stop and normal deceleration). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. Conclusion: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress.

Cite

CITATION STYLE

APA

Gasser, M., Riediker, M., Mueller, L., Perrenoud, A., Blank, F., Gehr, P., & Rothen-Rutishauser, B. (2009). Toxic effects of brake wear particles on epithelial lung cells in vitro. Particle and Fibre Toxicology, 6(1). https://doi.org/10.1186/1743-8977-6-30

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free