Background and aims Plants are able to grow under phosphorus (P)-deficient conditions by coordinating Pi acquisition, translocation from roots to shoots and remobilization within the plant. Previous reports have demonstrated that cell-wall pectin contributes greatly to rice cell-wall Pi re-utilization under P-deficient conditions, but whether other factors such as ethylene also affect the pectin-remobilizing capacity remains unclear. Methods Two rice cultivars, 'Nipponbare' (Nip) and 'Kasalath' (Kas) were cultured in the þP (complete nutrient solution), P (withdrawing P from the complete nutrient solution), þPþACC (1-amino-cyclopropane-1-carboxylic acid, an ethylene precursor, adding 1 lM ACC to the complete nutrient solution) and PþACC (adding 1 lM ACC to P nutrient solution) nutrient solutions for 7 d. Key Results After 7 d P treatment, there was clearly more soluble P in Nip root and shoot, accompanied by additional production of ethylene in Nip root compared with Kas. Under P-deficient conditions, addition of ACC significantly increased the cell-wall pectin content and decreased cell-wall retained P, and thus more soluble P was released to the root and translocated to the shoot, which was mediated by the expression of the P deficiency-responsive gene OsPT2, which also strongly induced by ACC treatment under both P-sufficient and P-deficient conditions. Conclusions Ethylene positively regulates pectin content and expression of OsPT2, which ultimately makes more P available by facilitating the solubilization of P fixed in the cell wall and its translocation to the shoot.
CITATION STYLE
Zhu, X. F., Zhu, C. Q., Zhao, X. S., Zheng, S. J., & Shen, R. F. (2016). Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa) by regulating cell-wall pectin and enhancing phosphate translocation to shoots. Annals of Botany, 118(4), 645–653. https://doi.org/10.1093/aob/mcw044
Mendeley helps you to discover research relevant for your work.