Reliable deep learning–based detection of misplaced chest electrodes during electrocardiogram recording: Algorithm development and validation

6Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Background: A 12-lead electrocardiogram (ECG) is the most commonly used method to diagnose patients with cardiovascular diseases. However, there are a number of possible misinterpretations of the ECG that can be caused by several different factors, such as the misplacement of chest electrodes. Objective: The aim of this study is to build advanced algorithms to detect precordial (chest) electrode misplacement. Methods: In this study, we used traditional machine learning (ML) and deep learning (DL) to autodetect the misplacement of electrodes V1 and V2 using features from the resultant ECG. The algorithms were trained using data extracted from high-resolution body surface potential maps of patients who were diagnosed with myocardial infarction, diagnosed with left ventricular hypertrophy, or a normal ECG. Results: DL achieved the highest accuracy in this study for detecting V1 and V2 electrode misplacement, with an accuracy of 93.0% (95% CI 91.46-94.53) for misplacement in the second intercostal space. The performance of DL in the second intercostal space was benchmarked with physicians (n=11 and age 47.3 years, SD 15.5) who were experienced in reading ECGs (mean number of ECGs read in the past year 436.54, SD 397.9). Physicians were poor at recognizing chest electrode misplacement on the ECG and achieved a mean accuracy of 60% (95% CI 56.09-63.90), which was significantly poorer than that of DL (P

Cite

CITATION STYLE

APA

Rjoob, K., Bond, R., Finlay, D., McGilligan, V., Leslie, S. J., Rababah, A., … Peace, A. (2021). Reliable deep learning–based detection of misplaced chest electrodes during electrocardiogram recording: Algorithm development and validation. JMIR Medical Informatics, 9(4). https://doi.org/10.2196/25347

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free