Helicobacter pylori infection in the stomach induces neuroinflammation: the potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer’s disease

20Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Helicobacter pylori (HP) is a Gram-negative bacterium that colonizes the human stomach chronically. Colonization of HP in the gastric mucosa not only causes gastrointestinal diseases, but also is associated with extra-gastric diseases, such as idiopathic thrombocytopenic purpura and neurological diseases. Among neurological diseases, epidemiological studies have shown that HP infection increases the prevalence of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since HP does not invade the central nervous system (CNS), it has been considered that systemic immunological changes induced by HP infection may play pathogenic roles in AD and PD. Here, we investigated the effects of HP infection on the CNS in vivo and in vitro. In the CNS, chronically HP-infected mice had microglial activation without HP colonization, although systemic immunological changes were not observed. This led us to explore the possibility that HP-derived outer membrane vesicles (HP-OMVs) could cause neuroinflammation. OMVs are small, spherical bilayer vesicles (20–500 nm) released into the extracellular space from the outer membrane of Gram-negative bacteria; OMVs contain lipopolysaccharide, proteins, peptidoglycan, DNA, and RNA. OMVs have also been shown to activate both innate and acquired immune cells in vitro, and to disrupt the tight junctions of the gastric epithelium (“leaky gut”) as well as cross the blood-brain barrier in vivo. Thus, in theory, OMVs can activate immune responses in the remote organs, including the lymphoid organs and CNS, if only OMVs enter the systemic circulation. From the exosome fraction of sera from HP-infected mice, we detected HP-specific DNA, suggesting the presence of HP-OMVs. We also found that microglia incubated with HP-OMVs in vitro increased the cell proliferation, inflammatory cytokine production, and migration. On the other hand, HP-OMVs suppressed the cell proliferation of neuroblastoma in vitro. Lastly, we found that AD model mice infected with HP had amyloid plaques adjacent to activated microglia and astrocytes in vivo. Based on the literature review and our experimental data, we propose our working hypothesis that OMVs produced in chronic HP infection in the gut induce neuroinflammation in the CNS, explaining the higher prevalence of AD in HP-infected people.

Cite

CITATION STYLE

APA

Park, A. M., & Tsunoda, I. (2022, December 1). Helicobacter pylori infection in the stomach induces neuroinflammation: the potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer’s disease. Inflammation and Regeneration. BioMed Central Ltd. https://doi.org/10.1186/s41232-022-00224-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free