Development of Novel Docetaxel Phospholipid Nanoparticles for Intravenous Administration: Quality by Design Approach

13Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The objective of this study was to develop novel docetaxel phospholipid nanoparticles (NDPNs) for intravenous administration. Modified solvent diffusion-evaporation method was adopted in the NDPN preparation. Central composite design (CCD) was employed in the optimization of the critical formulation factor (drug content) and process variable (stirring rate) to obtain NDPNs with 215.53 ± 1.9-nm particle size, 0.329 ± 0.02 polydispersity index (PDI), and 75.41 ± 4.81% entrapment efficiency. The morphological examination by transmission electron microscopy revealed spherical structure composed of a drug core stabilized within the phospholipid shell. Enhanced cell uptake of coumarin-6-loaded phospholipid nanoparticles by MCF-7 cell line indicated NDPN-efficient cell uptake. In vitro hemolysis test confirmed the safety of the phospholipid nanoparticles. NDPNs exhibited increased area under the curve (AUC) and mean residence time (MRT) by 3.0- and 3.3-fold, respectively, in comparison with the existing docetaxel parenteral formulation (Taxotere®), indicating a potential for sustained action. Thus, the novel NDPNs exhibit an ability to be an intravenous docetaxel formulation with enhanced uptake, decreased toxicity, and prolonged activity.

Cite

CITATION STYLE

APA

Yadav, D. K., Pawar, H., Wankhade, S., & Suresh, S. (2015). Development of Novel Docetaxel Phospholipid Nanoparticles for Intravenous Administration: Quality by Design Approach. AAPS PharmSciTech, 16(4), 855–864. https://doi.org/10.1208/s12249-014-0274-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free