Targeting the endoplasmic reticulum-stress response as an anticancer strategy

262Citations
Citations of this article
170Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The endoplasmic reticulum (ER) is the site of synthesis and folding of secretory and membrane bound proteins. The capacity of the ER to process proteins is limited and the accumulation of unfolded and misfolded proteins can lead to ER stress which has been associated with a wide range of diseases including cancer. In this review we initially provide an overview of our current understanding of how cells respond to ER stress at the molecular level and the key players involved in mediating the unfolded protein response (UPR). We review the evidence suggesting that the ER stress response could be important for the growth and development of tumors under stressful growth conditions such as hypoxia or glucose deprivation, which are commonly encountered by most solid tumors, and we analyse how it may be possible to exploit the unfolded protein response as an anticancer strategy. Two approaches to target the unfolded protein response are proposed-the first involves inhibiting components of the unfolded protein response so cells cannot adapt to stressful conditions and the second involves overloading the unfolded protein response so the cell is unable to cope, leading to cell death. We focused on proteins with an enzymatic activity that can be targeted by small molecule inhibitors as this is one of the most common approaches utilized by drug discovery companies. Finally, we review drugs currently in clinical development that affect the ER stress response and that may have potential as anti-tumor agents alone or in combination with other chemotherapeutics. © 2009 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Healy, S. J. M., Gorman, A. M., Mousavi-Shafaei, P., Gupta, S., & Samali, A. (2009, December 25). Targeting the endoplasmic reticulum-stress response as an anticancer strategy. European Journal of Pharmacology. https://doi.org/10.1016/j.ejphar.2009.06.064

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free