A Highly Potent Class of Halogenated Phenazine Antibacterial and Biofilm-Eradicating Agents Accessed Through a Modular Wohl-Aue Synthesis

40Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Unlike individual, free-floating planktonic bacteria, biofilms are surface-attached communities of slow- or non-replicating bacteria encased within a protective extracellular polymeric matrix enabling persistent bacterial populations to tolerate high concentrations of antimicrobials. Our current antibacterial arsenal is composed of growth-inhibiting agents that target rapidly-dividing planktonic bacteria but not metabolically dormant biofilm cells. We report the first modular synthesis of a library of 20 halogenated phenazines (HP), utilizing the Wohl-Aue reaction, that targets both planktonic and biofilm cells. New HPs, including 6-substituted analogues, demonstrate potent antibacterial activities against MRSA, MRSE and VRE (MIC = 0.003-0.78 μM). HPs bind metal(II) cations and demonstrate interesting activity profiles when co-treated in a panel of metal(II) cations in MIC assays. HP 1 inhibited RNA and protein biosynthesis while not inhibiting DNA biosynthesis using 3H-radiolabeled precursors in macromolecular synthesis inhibition assays against MRSA. New HPs reported here demonstrate potent eradication activities (MBEC = 0.59-9.38 μM) against MRSA, MRSE and VRE biofilms while showing minimal red blood cell lysis or cytotoxicity against HeLa cells. PEG-carbonate HPs 24 and 25 were found to have potent antibacterial activities with significantly improved water solubility. HP small molecules could have a dramatic impact on persistent, biofilm-associated bacterial infection treatments.

Cite

CITATION STYLE

APA

Yang, H., Abouelhassan, Y., Burch, G. M., Kallifidas, D., Huang, G., Yousaf, H., … Huigens, R. W. (2017). A Highly Potent Class of Halogenated Phenazine Antibacterial and Biofilm-Eradicating Agents Accessed Through a Modular Wohl-Aue Synthesis. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01045-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free