Kinetic instabilities in Mercury's magnetosphere: Three-dimensional simulation results

39Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

[1] A self-consistent global three-dimensional kinetic study of Mercury's magnetosphere is carried out examining waves and instabilities generated by ion temperature anisotropy and plasma flow. The overall structure of Mercury's upstream bow shock and magnetosheath are qualitatively very similar to those of Earth. Beam-generated long-wavelength oscillations are present upstream of Mercury's quasi-parallel bow shock, whereas large-amplitude mirror waves develop downstream of the quasi-parallel bow shock in the magnetosheath. A train of mirror waves forms also downstream of the quasi-perpendicular bow shock. A velocity shear near the magnetopause can lead to formation of vortex-like structures. The magnetospheric cavity close to the planet's equatorial plane is filled with ions much hotter than the solar wind protons. A drift-driven plasma belt close to the equator is present in the model and contains plasma with high-temperature anisotropy, and the loss cone for charged particles in this region is large. The belt may cause diamagnetic effects superimposed on the planet's internal magnetic field and can interact with Mercury's magnetopause. Copyright 2009 by the American Geophysical Union.

References Powered by Scopus

Magnetic field observations near Mercury: Preliminary results from Mariner 10

268Citations
N/AReaders
Get full text

Mercury's magnetosphere after MESSENGER's first flyby

162Citations
N/AReaders
Get full text

The structure of mercury's magnetic field from MESSENGER's first flyby

157Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Mercury's weather-beaten surface: Understanding mercury in the context of lunar and asteroidal space weathering studies

123Citations
N/AReaders
Get full text

The magnetic field of mercury

95Citations
N/AReaders
Get full text

MESSENGER observations of the plasma environment near Mercury

78Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Trávníček, P. M., Hellinger, P., Schriver, D., Hercik, D., Slavin, J. A., & Anderson, B. J. (2009). Kinetic instabilities in Mercury’s magnetosphere: Three-dimensional simulation results. Geophysical Research Letters, 36(7). https://doi.org/10.1029/2008GL036630

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 6

43%

Researcher 6

43%

Professor / Associate Prof. 2

14%

Readers' Discipline

Tooltip

Physics and Astronomy 14

88%

Earth and Planetary Sciences 2

13%

Save time finding and organizing research with Mendeley

Sign up for free