Many genetic studies have shown that the frequency of homologous recombination depends largely on the distance in which recombination can occur. We have studied the effect of varying the length of duplicated sequences on the frequency of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. We find that the frequency of recombination resulting in the loss of one of the repeats and the intervening sequences reaches a plateau when the repeats are short. In addition, the frequency of recombination to correct a point mutation contained in one of these repeats is not proportional to the size of the duplication but rather depends dramatically on the location of the mutation within the repeated sequences. However, the frequency of mitotic interchromosomal reciprocal recombination is dependent on the distance separating the markers. The difference in the response of intrachromosomal and interchromosomal mitotic recombination to increasing lengths of homology may indicate there are different rate-limiting steps for recombination in these two cases. These findings have important implications for the maintenance and evolution of duplicated sequences.
CITATION STYLE
Yuan, L. W., & Keil, R. L. (1990). Distance-independence of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. Genetics, 124(2), 263–273. https://doi.org/10.1093/genetics/124.2.263
Mendeley helps you to discover research relevant for your work.