Negative signs in many-body wavefunctions play an important role in quantum mechanics because interference relies on cancellation between amplitudes of opposite signs. The ground-state wavefunction of double semion model contains negative signs that cannot be removed by any local transformation. Here we study the quantum effects of these intrinsic negative signs. By proposing a generic double semion wavefunction in tensor network representation, we show that its norm can be mapped to the partition function of a triangular lattice Ashkin-Teller model with imaginary interactions. We use numerical tensor-network methods to solve this non-Hermitian model with parity-time symmetry and determine a global phase diagram. In particular, we find a dense loop phase described by non-unitary conformal field theory and a parity-time-symmetry breaking phase characterized by the zeros of the partition function. Therefore, our work establishes a connection between the intrinsic signs in the topological wavefunction and non-unitary phases in the parity-time-symmetric non-Hermitian statistical model.
CITATION STYLE
Zhang, Q., Xu, W. T., Wang, Z. Q., & Zhang, G. M. (2020). Non-Hermitian effects of the intrinsic signs in topologically ordered wavefunctions. Communications Physics, 3(1). https://doi.org/10.1038/s42005-020-00479-y
Mendeley helps you to discover research relevant for your work.