Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception

30Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Photovoltaic (PV) modules convert renewable and sustainable solar energy into electricity. However, the uncertainty of PV power production brings challenges for the grid operation. To facilitate the management and scheduling of PV power plants, forecasting is an essential technique. In this paper, a robust multilayer perception (MLP) neural network was developed for day-ahead forecasting of hourly PV power. A generic MLP is usually trained by minimizing the mean squared loss. The mean squared error is sensitive to a few particularly large errors that can lead to a poor estimator. To tackle the problem, the pseudo-Huber loss function, which combines the best properties of squared loss and absolute loss, was adopted in this paper. The effectiveness and efficiency of the proposed method was verified by benchmarking against a generic MLP network with real PV data. Numerical experiments illustrated that the proposed method performed better than the generic MLP network in terms of root mean squared error (RMSE) and mean absolute error (MAE).

Cite

CITATION STYLE

APA

Huang, C., Cao, L., Peng, N., Li, S., Zhang, J., Wang, L., … Wang, J. H. (2018). Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception. Sustainability (Switzerland), 10(12). https://doi.org/10.3390/su10124863

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free