Brachytherapy with intratumoral injections of radiometal-labeled polymers that thermoresponsively self-aggregate in tumor tissues

17Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Brachytherapy is a type of radiotherapy wherein titanium capsules containing therapeutic radioisotopes are implanted within tumor tissues, enabling high-dose radioirradiation to tumor tissues around the seeds. Although marked therapeutic effects have been demonstrated, brachytherapy needs a complicated implantation technique under general anesthesia and the seeds could migrate to other organs. The aim of this study was to establish a novel brachytherapy using biocompatible, injectable thermoresponsive polymers (polyoxazoline [POZ]) labeled with 90Y, which can self-aggregate above a specific transition temperature (Tt), resulting in long-term intratumoral retention of radioactivity and therapeutic effect. Therefore, we evaluated the tumor retention of radiolabeled POZ derivatives and their therapeutic effects. Methods: Using oxazoline derivatives with ethyl (Et), isopropyl (Isp), and propyl (Pr) side chains, we synthesized EtPOZ, IspPOZ, Isp-PrPOZ (heteropolymer), and PrPOZ and measured their characteristic Tts. The intratumoral retention of 111In-labeled POZ was evaluated until 7 d after injection in nude mice bearing PC-3 human prostate cancer. The intratumoral localization of 111In-labeled POZ derivatives was investigated by an autoradiographic study. Furthermore, a therapeutic study using 90Y-labeled Isp-PrPOZ was performed, and tumor growth and survival rate were evaluated. Results: The Tts of EtPOZ, IspPOZ, Isp-PrPOZ, and PrPOZ (;20 kDa) were greater than 70°C, 34°C, 25°C, and 19°C, respectively. In the intratumoral injection study, Isp-PrPOZ and PrPOZ (2,000 μM) with Tts lower than tumor temperature (33.5°C under anesthesia) showed a significantly higher retention of radioactivity at 1 d after injection (73.6% and 73.9%, respectively) than EtPOZ (5.6%) and IspPOZ (15.8%). Even at low injected dose (100 μM), Isp-PrPOZ exhibited high retention (68.3% at 1 d). The high level of radioactivity of Isp-PrPOZ was retained in the tumor 7 d after injection (69.5%). The autoradiographic study demonstrated that the radioactivity of 111In-labeled Isp-PrPOZ and PrPOZ was localized in a small area. In the therapeutic study using 90Y-labeled Isp-PrPOZ, significant suppression of tumor growth and prolonged survival rate were achieved in an injection dose-dependent manner compared with that observed for the vehicle-injected group and nonradioactive Isp- PrPOZ-injected group. Conclusion: The injectable 90Y-labeled Isp-PrPOZ was retained for a prolonged period within tumor tissues via self-aggregation and exhibited marked therapeutic effect, suggesting its usefulness for brachytherapy.

Cite

CITATION STYLE

APA

Sano, K., Kanada, Y., Kanazaki, K., Ding, N., Ono, M., & Saji, H. (2017). Brachytherapy with intratumoral injections of radiometal-labeled polymers that thermoresponsively self-aggregate in tumor tissues. Journal of Nuclear Medicine, 58(9), 1380–1385. https://doi.org/10.2967/jnumed.117.189993

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free