Improving spinosad production by tuning expressions of the forosamine methyltransferase and the forosaminyl transferase to reduce undesired less active byproducts in the heterologous host Streptomyces albus J1074

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Spinosad is a macrolide insecticide with the tetracyclic lactone backbone to which forosamine and tri-o-methylrhamnose are attached. Both the sugar moieties are essential for its insecticidal activity. In biosynthesis of spinosad, the amino group of forosamine is dimethylated by SpnS and then transferred onto the lactone backbone by SpnP. Because the spinosad native producer is difficult to genetically manipulate, we previously changed promoters, ribosome binding sites and start codons of 23 spinosad biosynthetic genes to construct an artificial gene cluster which resulted in a 328-fold yield improvement in the heterologous host Streptomyces albus J1074 compared with the native gene cluster. However, in fermentation of J1074 with the artificial gene cluster, the N-monodesmethyl spinosad with lower insecticidal activity was always produced with the same titer as spinosad. Results: By tuning expression of SpnS with an inducible promotor, we found that the undesired less active byproduct N-monodesmethyl spinosad was produced when SpnS was expressed at low level. Although N-monodesmethyl spinosad can be almost fully eliminated with high SpnS expression level, the titer of desired product spinosad was only increased by less than 38%. When the forosaminyl transferase SpnP was further overexpressed together with SpnS, the titer of spinosad was improved by 5.3 folds and the content of N-desmethyl derivatives was decreased by ~ 90%. Conclusion: N-monodesmethyl spinosad was produced due to unbalanced expression of spnS and upstream biosynthetic genes in the refactored artificial gene cluster. The accumulated N-desmethyl forosamine was transferred onto the lactone backbone by SpnP. This study suggested that balanced expression of biosynthetic genes should be considered in the refactoring strategy to avoid accumulation of undesired intermediates or analogues which may affect optimal production of desired compounds.

Cite

CITATION STYLE

APA

Li, X., Guo, R., Luan, J., Fu, J., Zhang, Y., & Wang, H. (2023). Improving spinosad production by tuning expressions of the forosamine methyltransferase and the forosaminyl transferase to reduce undesired less active byproducts in the heterologous host Streptomyces albus J1074. Microbial Cell Factories, 22(1). https://doi.org/10.1186/s12934-023-02023-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free