FROST: Flexible Round-Optimized Schnorr Threshold Signatures

25Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Unlike signatures in a single-party setting, threshold signatures require cooperation among a threshold number of signers each holding a share of a common private key. Consequently, generating signatures in a threshold setting imposes overhead due to network rounds among signers, proving costly when secret shares are stored on network-limited devices or when coordination occurs over unreliable networks. In this work, we present FROST, a Flexible Round-Optimized Schnorr Threshold signature scheme that reduces network overhead during signing operations while employing a novel technique to protect against forgery attacks applicable to similar schemes in the literature. FROST improves upon the state of the art in Schnorr threshold signature protocols, as it can safely perform signing operations in a single round without limiting concurrency of signing operations, yet allows for true threshold signing, as only a threshold t out of n possible participants are required for signing operations, such that t≤ n. FROST can be used as either a two-round protocol, or optimized to a single-round signing protocol with a pre-processing stage. FROST achieves its efficiency improvements in part by allowing the protocol to abort in the presence of a misbehaving participant (who is then identified and excluded from future operations)—a reasonable model for practical deployment scenarios. We present proofs of security demonstrating that FROST is secure against chosen-message attacks assuming the discrete logarithm problem is hard and the adversary controls fewer participants than the threshold.

Cite

CITATION STYLE

APA

Komlo, C., & Goldberg, I. (2021). FROST: Flexible Round-Optimized Schnorr Threshold Signatures. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12804 LNCS, pp. 34–65). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-81652-0_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free