The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies

0Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Ultra compact dwarf galaxies (UCDs) have similar properties as massive globular clusters or the nuclei of nucleated galaxies. Recent observations suggesting a high dark matter content and a steep spatial distribution within groups and clusters provide new clues as to their origins.We perform high-resolution N-body/smoothed particle hydrodynamics simulations designed to elucidate two possible formation mechanisms for these systems: the merging of globular clusters in the centre of a dark matter halo, or the massively stripped remnant of a nucleated galaxy. Both models produce density profiles as well as the half light radii that can fit the observational constraints. However, we show that the first scenario results to UCDs that are underluminous and contain no dark matter. This is because the sinking process ejects most of the dark matter particles from the halo centre. Stripped nuclei give a more promising explanation, especially if the nuclei form via the sinking of gas, funneled down inner galactic bars, since this process enhances the central dark matter content. Even when the entire disk is tidally stripped away, the nucleus stays intact and can remain dark matter dominated even after severe stripping. Total galaxy disruption beyond the nuclei only occurs on certain orbits and depends on the amount of dissipation during nuclei formation. By comparing the total disruption of CDM subhaloes in a cluster potential we demonstrate that this model also leads to the observed spatial distribution of UCDs which can be tested in more detail with larger data sets. © Springer-Verlag Berlin Heidelberg 2012.

Cite

CITATION STYLE

APA

Goerdt, T. (2012). The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies. In Astrophysics and Space Science Proceedings (pp. 65–73). Kluwer Academic Publishers. https://doi.org/10.1007/978-3-642-22018-0_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free