Highly accurate carbohydrate-binding site prediction with DeepGlycanSite

5Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

As the most abundant organic substances in nature, carbohydrates are essential for life. Understanding how carbohydrates regulate proteins in the physiological and pathological processes presents opportunities to address crucial biological problems and develop new therapeutics. However, the diversity and complexity of carbohydrates pose a challenge in experimentally identifying the sites where carbohydrates bind to and act on proteins. Here, we introduce a deep learning model, DeepGlycanSite, capable of accurately predicting carbohydrate-binding sites on a given protein structure. Incorporating geometric and evolutionary features of proteins into a deep equivariant graph neural network with the transformer architecture, DeepGlycanSite remarkably outperforms previous state-of-the-art methods and effectively predicts binding sites for diverse carbohydrates. Integrating with a mutagenesis study, DeepGlycanSite reveals the guanosine-5’-diphosphate-sugar-recognition site of an important G-protein coupled receptor. These findings demonstrate DeepGlycanSite is invaluable for carbohydrate-binding site prediction and could provide insights into molecular mechanisms underlying carbohydrate-regulation of therapeutically important proteins.

Cite

CITATION STYLE

APA

He, X., Zhao, L., Tian, Y., Li, R., Chu, Q., Gu, Z., … Cheng, X. (2024). Highly accurate carbohydrate-binding site prediction with DeepGlycanSite. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49516-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free