This is an expository review paper illustrating the "martingale method" for proving many-server heavy-traffic stochastic-process lim- its for queueingmodels, supporting diffusion-process approximations.Care- ful treatment is given to an elementary model - the classical infinite-server model M/M/∞, but models with finitely many servers and customer aban- donment are also treated. The Markovian stochastic process representing the number of customers in the system is constructed in terms of rate- 1 Poisson processes in two ways: (i) through random time changes and (ii) through random thinnings. Associated martingale representations are obtained for these constructions by applying, respectively: (i) optional stop- ping theorems where the random time changes are the stopping times and (ii) the integration theorem associated with random thinning of a counting process. Convergence to the diffusion process limit for the appropriate sequence of scaled queueing processes is obtained by applying the continuous mapping theorem. A key FCLT and a key FWLLN in this framework are established both with and without applying martingales.
CITATION STYLE
Pang, G., Talreja, R., & Whitt, W. (2007). Martingale proofs of many-server heavy-traffic limits for Markovian queues. Probability Surveys, 4(1), 193–267. https://doi.org/10.1214/06-PS091
Mendeley helps you to discover research relevant for your work.