Biological Effects of Substituting Cytosine for 5-Hydroxymethylcytosine in the Deoxyribonucleic Acid of Bacteriophage T4

  • Kutter E
  • Wiberg J
25Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Previous work from this laboratory has shown that the cytosine-containing T4 deoxyribonucleic acid (DNA) made by deoxycytidine triphosphatase (dCTPase) amber mutants is extensively degraded, and that nucleases controlled by genes 46 and 47 participate in this process. In this paper, we examine other consequences of a defective dCTPase. Included are studies of DNA synthesis and phage production, and of the control of both early and late protein synthesis after infection of Escherichia coli B with various T4 mutants defective in genes 56 (dCTPase), 42 (dCMP hydroxymethylase), 1 (deoxynucleotide kinase), 43 (DNA polymerase), 30 (polynucleotide ligase), 46 and 47 (DNA breakdown) or e (lysozyme). By varying the temperature of infection with a temperature-sensitive dCTPase mutant, we have been able to control intracellular dCTPase activity, and thus vary the cytosine content of the phage DNA. We have produced and characterized viable T4 phage in which cytosine replaces 20% of the 5-hydroxymethylcytosine (HMC) in the DNA. We present evidence which suggests that intact, cytosine-containing T4 DNA is much less efficient than is normal T4 DNA in directing the synthesis of tail-fiber antigen. Lysozyme production is much less affected by progressively decreasing dCTPase activity; however, complete substitution of cytosine is correlated with a depression of lysozyme synthesis greater than expected from the defective synthesis of DNA. Low but significant lysozyme synthesis is observed late after infection of E. coli B with T4 amber mutants defective in a number of genes controlling DNA synthesis. The “20% cytosine” T4 phage, once produced, can initiate an apparently normal infection at permissive temperatures; the synthesis of early enzymes, DNA, and phage does not appear to be impaired. Two roles for HMC in T4 DNA have been indicated previously: (i) involvement in host-controlled restriction of the phage, in which glucosylation of the hydroxymethyl group plays a crucial role (16, 29, 53, 58), and (ii) protection of vegetative DNA against phage-controlled nucleases, a protection not dependent on glucosylation (41, 66, 67). A third role is suggested by our present results: transcription of at least some late genes can occur only from HMC-containing DNA and not from cytosine-containing DNA.

Cite

CITATION STYLE

APA

Kutter, E. M., & Wiberg, J. S. (1969). Biological Effects of Substituting Cytosine for 5-Hydroxymethylcytosine in the Deoxyribonucleic Acid of Bacteriophage T4. Journal of Virology, 4(4), 439–453. https://doi.org/10.1128/jvi.4.4.439-453.1969

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free