What Machine Learning Can and Cannot Do for Inertial Confinement Fusion

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Machine learning methodologies have played remarkable roles in solving complex systems with large data, well-defined input–output pairs, and clearly definable goals and metrics. The methodologies are effective in image analysis, classification, and systems without long chains of logic. Recently, machine-learning methodologies have been widely applied to inertial confinement fusion (ICF) capsules and the design optimization of OMEGA (Omega Laser Facility) capsule implosion and NIF (National Ignition Facility) ignition capsules, leading to significant progress. As machine learning is being increasingly applied, concerns arise regarding its capabilities and limitations in the context of ICF. ICF is a complicated physical system that relies on physics knowledge and human judgment to guide machine learning. Additionally, the experimental database for ICF ignition is not large enough to provide credible training data. Most researchers in the field of ICF use simulations, or a mix of simulations and experimental results, instead of real data to train machine learning models and related tools. They then use the trained learning model to predict future events. This methodology can be successful, subject to a careful choice of data and simulations. However, because of the extreme sensitivity of the neutron yield to the input implosion parameters, physics-guided machine learning for ICF is extremely important and necessary, especially when the database is small, the uncertain-domain knowledge is large, and the physical capabilities of the learning models are still being developed. In this work, we identify problems in ICF that are suitable for machine learning and circumstances where machine learning is less likely to be successful. This study investigates the applications of machine learning and highlights fundamental research challenges and directions associated with machine learning in ICF.

Cite

CITATION STYLE

APA

Cheng, B., & Bradley, P. A. (2023). What Machine Learning Can and Cannot Do for Inertial Confinement Fusion. Plasma, 6(2), 334–344. https://doi.org/10.3390/plasma6020023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free