Objectives: This study aims to investigate the effects of Janus kinase/signal transducers and activators of the transcription (JAK/STAT) pathway inhibition on collagen biosynthesis in fibroblast cell culture by tofacitinib. Materials and methods: BJ-CRL-1474® (skin) and BRL3A® (hepatic) fibroblast cell cultures were proliferated in a suitable medium. Tofacitinib was administered to fibroblast cells proliferating in 96-well flasks at concentrations of 25, 50, 100, 200, 400, and 800 nM. Tissue inhibitor of metalloproteinase-1 (TIMP-1), matrix metalloproteinase-3 (MMP-3), transforming growth factor beta 1 (TGF-β1), and hydroxyproline levels were measured using the enzyme-linked immunosorbent assay method. Results: Tofacitinib showed cytotoxic effect on skin and liver cell culture. The cytotoxic effect of tofacitinib started at 100 nM (p<0.05). The highest effect was obtained at 800 nM. The time-dependent cytotoxic effect of tofacitinib was significantly higher at all concentrations after 72 hours than at 24 and 48 hours (p<0.05). The level of TGF-β1 was significantly lower even at a tofacitinib concentration of 25 nM (p<0.05). There were significant decreases in MMP-3, TIMP-1, and hydroxyproline levels after tofacitinib administration (p<0.05). Conclusion: Tofacitinib inhibited fibroblast cell proliferation in a concentration-dependent manner in a fibroblast cell culture. However, further extensive animal and human studies are necessary to determine the clinical significance of this effect.
CITATION STYLE
Şahin, M., Aydin, H., Altun, A., Derin, M. E., & Şahin, A. (2020). The effects of tofacitinib-mediated janus kinase/signal transducers and activators of the transcription signal pathway inhibition on collagen biosynthesis in hepatic and skin fibroblast cell culture. Archives of Rheumatology, 35(3), 343–350. https://doi.org/10.46497/ArchRheumatol.2020.7568
Mendeley helps you to discover research relevant for your work.