Introduction: Polysomnography (PSG) is the gold-standard to diagnose obstructive sleep apnea (OSA). OSA severity diagnosis is defined by the apnea-hypopnea index (AHI) defined as the number of apnea and hypopnea events measured per hour of sleep. The Dreem2 headband (DH) is a self-administered, easy to use device that measure EEG, breathing frequency, heart rate and sound at-home. In our study, we assessed the performance of the DH to automatically detects OSA compared to 3 sleep's experts scoring on PSG. Methods: 41 subjects (8 females, 42.6 ± 13.7 y.o.) having a suspicion of OSA performed a night at-home wearing both a PSG and the DH. Each PSG record was scored for apnea and hypopnea events by 3 independent trained sleep experts following AASM guidelines. The deep learning approach DOSED, was trained on the DH signals using the manual apnea scoring. 10-fold cross-validation was used to provide predictions for each of the 41 subjects with the DH. Results: We observed an average AHI expert's scoring of 13.6 ± 10.1 CI[10.5, 16.5] compared to 12.9 ± 10.3 CI[9.6, 15.8] for the DH. Both, the correlation between the 3 scorers (r= 0.88, p < 0.001) and the DH and the scorers (r=0.79, p< 0.001) were significant. The specificity and sensitivity to detect mild OSA (AHI ≤ 5) was 84.4 % and 96.4 % for the DH and 86.5 % and 86.0% for the scorers. Conclusion: The results show that the DH using deep learning can detect OSA with an accuracy similar to the sleep experts. The use of DH paves the way for longitudinal monitoring of patients with a suspicion of OSA and its accessibility could lead to better screening of the general population.
CITATION STYLE
Guillot, A., Moutakanni, T., Harris, M., Arnal, P. J., & Thorey, V. (2020). 0616 Validation of a Sleep Headband for Detecting Obstructive Sleep Apnea. Sleep, 43(Supplement_1), A236–A236. https://doi.org/10.1093/sleep/zsaa056.613
Mendeley helps you to discover research relevant for your work.