Glioblastoma multiforme (GBM) is one of the most malignant and aggressive tumors, and has a very poor prognosis with a mean survival time of <2 years, despite intensive treatment using chemo-radiation. Therefore, novel therapeutic approaches including immunotherapy have been developed against GBM. For the purpose of identifying novel target antigens contributing to GBM treatment, we developed 17 primary glioma cell lines derived from high-grade glioma patients, and analyzed the expression of various tumor antigens and glioma-associated markers using a quantitative PCR and immunohistochemistry (IHC). A quantitative PCR using 54 cancer-testis (CT) antigen-specific primers showed that 36 CT antigens were positive in at least 1 of 17 serum-derived cell lines, and 17 antigens were positive in >50% cell lines. Impressively, 6 genes (BAGE, MAGE-A12, CASC5, CTAGE1, DDX43 and IL-13RA2) were detected in all cell lines. The expression of other 13 glioma-associated antigens than CT genes were also investigated, and 10 genes were detected in >70% cell lines. The expression of CT antigen and glioma-associated antigen genes with a high frequency were also verified in IHC analysis. Moreover, a relationship of antigen gene expressions with a high frequency to overall survival was investigated using the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database of the National Cancer Institute, and expression of 6 genes including IL-13RA2 was inversely correlated to overall survival time. Furthermore, 4 genes including DDX43, TDRD1, HER2 and gp100 were identified as MGMT-relevant factors. In the present study, several CT antigen including novel genes were detected in high-grade glioma primary cell lines, which might contribute to developing novel immunotherapy and glioma-specific biomarkers in future.
CITATION STYLE
Akiyama, Y., Komiyama, M., Miyata, H., Yagoto, M., Ashizawa, T., Iizuka, A., … Yamaguchi, K. (2014). Novel cancer-testis antigen expression on glioma cell lines derived from high-grade glioma patients. Oncology Reports, 31(4), 1683–1690. https://doi.org/10.3892/or.2014.3049
Mendeley helps you to discover research relevant for your work.