Generalized modular transformations in (3+1)D topologically ordered phases and triple linking invariant of loop braiding

Citations of this article
Mendeley users who have this article in their library.


In topologically ordered quantum states of matter in 2+1D (space-time dimensions), the braiding statistics of anyonic quasiparticle excitations is a fundamental characterizing property which is directly related to global transformations of the ground-state wavefunctions on a torus (the modular transformations). On the other hand, there are theoretical descriptions of various topologically ordered states in 3+1D, which exhibit both point-like and loop-like excitations, but systematic understanding of the fundamental physical distinctions between phases, and how these distinctions are connected to quantum statistics of excitations, is still lacking. One main result of this work is that the three-dimensional generalization of modular transformations, when applied to topologically ordered ground states, is directly related to a certain braiding process of loop-like excitations. This specific braiding surprisingly involves three loops simultaneously, and can distinguish different topologically ordered states. Our second main result is the identification of the three-loop braiding as a process in which the worldsheets of the three loops have a non-trivial triple linking number, which is a topological invariant characterizing closed two-dimensional surfaces in four dimensions. In this work we consider realizations of topological order in 3+1D using cohomological gauge theory in which the loops have Abelian statistics, and explicitly demonstrate our results on examples with $Z_2\times Z_2$ topological order.




Jiang, S., Mesaros, A., & Ran, Y. (2014). Generalized modular transformations in (3+1)D topologically ordered phases and triple linking invariant of loop braiding. Physical Review X. American Physical Society.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free