Greater power and computational efficiency for kernel-based association testing of sets of genetic variants

23Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Results: After reviewing theoretical differences in performance between the score and LR tests, we find empirically on real data that the LR test generally has more power. In particular, on 15 of 17 real datasets, the LR test yielded at least as many associations as the score test - up to 23 more associations - whereas the score test yielded at most one more association than the LR test in the two remaining datasets. On synthetic data, we find that the LR test yielded up to 12% more associations, consistent with our results on real data, but also observe a regime of extremely small signal where the score test yielded up to 25% more associations than the LR test, consistent with theory. Finally, our computational speedups now enable (i) efficient LR testing when the background kernel is full rank, and (ii) efficient score testing when the background kernel changes with each test, as for gene-gene interaction tests. The latter yielded a factor of 2000 speedup on a cohort of size 13 500. Motivation: Set-based variance component tests have been identified as a way to increase power in association studies by aggregating weak individual effects. However, the choice of test statistic has been largely ignored even though it may play an important role in obtaining optimal power. We compared a standard statistical test - a score test - with a recently developed likelihood ratio (LR) test. Further, when correction for hidden structure is needed, or gene-gene interactions are sought, state-of-the art algorithms for both the score and LR tests can be computationally impractical. Thus we develop new computationally efficient methods.

Cite

CITATION STYLE

APA

Lippert, C., Xiang, J., Horta, D., Widmer, C., Kadie, C., Heckerman, D., & Listgarte, J. (2014). Greater power and computational efficiency for kernel-based association testing of sets of genetic variants. Bioinformatics, 30(22), 3206–3214. https://doi.org/10.1093/bioinformatics/btu504

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free