Hybrid BCI Coupling EEG and EMG for Severe Motor Disabilities

Citations of this article
Mendeley users who have this article in their library.


In this paper, we are studying hybrid Brain-Computer Interfaces (BCI) coupling joystick data, electroencephalogram (EEG – electrical activity of the brain) and electromyogram (EMG – electrical activity of muscles) activities for severe motor disabilities. We are focusing our study on muscular activity as a control modality to interact with an application. We present our data processing and classification technique to detect right and left hand movements. EMG modality is well adapted for DMD patients, because less strength is needed to detect movements in contrast to conventional interfaces like joysticks. Across virtual reality tools, we believe that users will be more able to understand how to interact with such kind of interactive systems. This first part of our study report some very good results concerning the detection of hand movements, according to muscular channel, on healthy subjects.




Rouillard, J., Duprès, A., Cabestaing, F., Leclercq, S., Bekaert, M. H., Piau, C., … Lecocq, C. (2015). Hybrid BCI Coupling EEG and EMG for Severe Motor Disabilities. Procedia Manufacturing, 3, 29–36. https://doi.org/10.1016/j.promfg.2015.07.104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free