Identification of amino acid propensities that are strong determinants of linear B-cell epitope using neural networks

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Background: Identification of amino acid propensities that are strong determinants of linear B-cell epitope is very important to enrich our knowledge about epitopes. This can also help to obtain better epitope prediction. Typical linear B-cell epitope prediction methods combine various propensities in different ways to improve prediction accuracies. However, fewer but better features may yield better prediction. Moreover, for a propensity, when the sequence length is k, there will be k values, which should be treated as a single unit for feature selection and hence usual feature selection method will not work. Here we use a novel Group Feature Selecting Multilayered Perceptron, GFSMLP, which treats a group of related information as a single entity and selects useful propensities related to linear B-cell epitopes, and uses them to predict epitopes. Methodology/ Principal Findings: We use eight widely known propensities and four data sets. We use GFSMLP to rank propensities by the frequency with which they are selected. We find that Chou's beta-turn and Ponnuswamy's polarity are better features for prediction of linear B-cell epitope. We examine the individual and combined discriminating power of the selected propensities and analyze the correlation between paired propensities. Our results show that the selected propensities are indeed good features, which also cooperate with other propensities to enhance the discriminating power for predicting epitopes. We find that individually polarity is not the best predictor, but it collaborates with others to yield good prediction. Usual feature selection methods cannot provide such information. Conclusions/ Significance: Our results confirm the effectiveness of active (group) feature selection by GFSMLP over the traditional passive approaches of evaluating various combinations of propensities. The GFSMLP-based feature selection can be extended to more than 500 remaining propensities to enhance our biological knowledge about epitopes and to obtain better prediction. A graphical-user-interface version of GFSMLP is available at: http://bio.classcloud.org/GFSMLP/. © 2012 Su et al.

Cite

CITATION STYLE

APA

Su, C. H., Pal, N. R., Lin, K. L., & Chung, I. F. (2012). Identification of amino acid propensities that are strong determinants of linear B-cell epitope using neural networks. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030617

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free