Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup

  • Thulliez L
  • Doré D
  • Berthoumieux E
  • et al.
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

© The Authors, published by EDP Sciences, 2017. In the past years, the fission studies have been mainly focused on thermal fission because most of the current nuclear reactors work in this energy domain. With the development of GEN-IV reactor concepts, mainly working in the fast energy domain, new nuclear data are needed. The FALSTAFF spectrometer under development at CEA-Saclay, France, is a two-arm spectrometer which will provide mass yields before (2V method) and after (EV method) neutron evaporation and consequently will have access to the neutron multiplicity as a function of mass. The axial ionization chamber, in addition to the kinetic energy value, will measure the energy loss profile of the fragment along its track. This energy loss profile will give information about the fragment nuclear charge. This paper will focus on recent developments on the FALSTAFF design. A special attention will be paid to the impact of the detector material thickness on the uncertainty of different observables.

Cite

CITATION STYLE

APA

Thulliez, L., Doré, D., Berthoumieux, E., Panebianco, S., Legou, P., Kebbiri, M., … Oberstedt, S. (2017). Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup. EPJ Web of Conferences, 146, 04028. https://doi.org/10.1051/epjconf/201714604028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free