Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling

Citations of this article
Mendeley users who have this article in their library.
Get full text


Correctly localizing the protein-ATP binding residues is valuable for both basic experimental biology and drug discovery studies. Protein-ATP binding residues prediction is a typical imbalanced learning problem as the size of minority class (binding residues) is far less than that of majority class (non-binding residues) in the entire sequence. Directly applying the traditional machine learning approach for this task is not suitable as the learning results will be severely biased towards the majority class. To circumvent this problem, a modified AdaBoost ensemble scheme based on random under-sampling is developed. In addition, effectiveness of different features for protein-ATP binding residues prediction is systematically analyzed and a method for objectively reporting evaluation results under the imbalanced learning scenario is also discussed. Experimental results on three benchmark datasets show that the proposed method achieves higher prediction accuracy. The proposed method, called TargetATP, has been implemented with Java programming language and is distributed via Java Web Start technology. TargetATP and the datasets used are freely available at for academicuse. © 2012 Elsevier B.V..




Yu, D. J., Hu, J., Tang, Z. M., Shen, H. B., Yang, J., & Yang, J. Y. (2013). Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling. Neurocomputing, 104, 180–190.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free