Knitted nitinol represents a new generation of constrictive external vein graft meshes

Citations of this article
Mendeley users who have this article in their library.


Objective: Constriction of vein grafts with braided external nitinol meshes had previously led to the successful elimination of neointimal tissue formation. We investigated whether pulse compliance, smaller kink-free bending radius, and milder medial atrophy can be achieved by knitting the meshes rather than braiding, without losing the suppressive effect on intimal hyperplasia. Methods: Pulse compliance, bending stiffness, and bending radius, as well as longitudinal-radial deformation-coupling and radial compression, were compared in braided and knitted nitinol meshes. Identical to previous studies with braided mesh grafts, a senescent nonhuman primate model (Chacma baboons; bilateral femoral interposition grafts/6 months) mimicking the clinical size mismatch between vein grafts and runoff arteries was used to examine the effect of knitted external meshes on vein grafts: nitinol mesh-constricted (group 1); nitinol mesh-constricted and fibrin sealant (FS) spray-coated for mesh attachment (group 2); untreated control veins (group 3), and FS spray-coated control veins (group 4). Results: Compared with braided meshes, knitted meshes had 3.8-times higher pulse compliance (3.43 ± 0.53 vs 0.94 ± 0.12%/100 mm Hg; P = .00002); 30-times lower bending stiffness (0.015 ± 0.002 vs 0.462 ± 0.077 Nmm 2 ; P = .0006); 9.2-times narrower kink-free bending radius (15.3 ± 0.4 vs 140.8 ± 22.4 mm; P = .0006), and 4.3-times lower radial narrowing caused by axial distension (18.0% ± 1.0% vs 77.0% ± 3.7%; P = .00001). Compared with mesh-supported grafts, neointimal tissue was 8.5-times thicker in group I (195 ± 45 μm) vs group III (23.0 ± 21.0 μm; P < .001) corresponding with a 14.3-times larger neointimal area in group I (4330 ± 957 × 103 μm 2 ) vs group III (303 ± 221× 103 μm 2 ; P < .00004). FS had no significant influence. Medial muscle mass remained at 43.4% in knitted meshes vs the 28.1% previously observed in braided meshes. Conclusion: Combining the suppression of intimal hyperplasia with a more physiologic remodeling process of the media, manifold higher kink-resistance, and lower fraying than in braided meshes makes knitted nitinol an attractive concept in external vein graft protection. © 2011 Society for Vascular Surgery.




Zilla, P., Moodley, L., Wolf, M. F., Bezuidenhout, D., Sirry, M. S., Rafiee, N., … Franz, T. (2011). Knitted nitinol represents a new generation of constrictive external vein graft meshes. Journal of Vascular Surgery, 54(5), 1439–1450.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free