Learning from nature: Use material architecture to break the performance tradeoffs

Citations of this article
Mendeley users who have this article in their library.


In material science, the enhancement of a specific material performance is often accompanied by undermining another material property, notoriously known as the performance tradeoffs, such as that between strength and toughness, stiffness and energy dissipation, and flexibility and fast response. Free combinations of material properties that go beyond these performance tradeoffs are highly desirable in areas as diverse as civil engineering, soft robotics, armor designs, and reconfigurable metamaterials. Learning from nature, we 3D print architected materials with bio-inspired microstructures that successfully surpass the above performance tradeoffs. The integration of microstructural elements on multiple length scales (hierarchical designs) and on one specific length scale (hybrid designs) are further discussed and compared. Through experimental and theoretical analysis, we reveal that the performance enhancements stem from the material architecture's significant manipulation over the deformation field, crack location, and crack pattern. This study on the relationship between material microstructure and material performance will aid architected material design with ideal combinations of mechanical properties.




Jia, Z., Yu, Y., & Wang, L. (2019). Learning from nature: Use material architecture to break the performance tradeoffs. Materials and Design, 168. https://doi.org/10.1016/j.matdes.2019.107650

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free