Mathematical modeling of multi-drugs therapy: a challenge for determining the optimal combinations of antiviral drugs

14Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

In the current era of antiviral drug therapy, combining multiple drugs is a primary approach for improving antiviral effects, reducing the doses of individual drugs, relieving the side effects of strong antiviral drugs, and preventing the emergence of drug-resistant viruses. Although a variety of new drugs have been developed for HIV, HCV and influenza virus, the optimal combinations of multiple drugs are incompletely understood. To optimize the benefits of multi-drugs combinations, we must investigate the interactions between the combined drugs and their target viruses. Mathematical models of viral infection dynamics provide an ideal tool for this purpose. Additionally, whether drug combinations computed by these models are synergistic can be assessed by two prominent drug combination theories, Loewe additivity and Bliss independence. By combining the mathematical modeling of virus dynamics with drug combination theories, we could show the principles by which drug combinations yield a synergistic effect. Here, we describe the theoretical aspects of multi-drugs therapy and discuss their application to antiviral research.

Cite

CITATION STYLE

APA

Koizumi, Y., & Iwami, S. (2014). Mathematical modeling of multi-drugs therapy: a challenge for determining the optimal combinations of antiviral drugs. Theoretical Biology & Medical Modelling, 11, 41. https://doi.org/10.1186/1742-4682-11-41

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free