Methanesulfonate (MSA) catabolic genes from marine and estuarine bacteria

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Quantitatively, methanesulfonate (MSA) is a very relevant compound in the global biogeochemical sulfur cycle. Its utilization by bacteria as a source of carbon and energy has been described and a specific enzyme, methanesulfonate monooxygenase (MSAMO), has been found to perform the first catabolic step of its oxidation. Other proteins seemingly involved in the import of MSA into bacterial cells have been reported. In this study, we obtained novel sequences of genes msmA and msmE from marine, estuary and soil MSA-degraders (encoding the large subunit of the MSAMO enzyme and the periplasmic component of the import system, respectively). We also obtained whole-genome sequences of two novel marine Filomicrobium strains, Y and W, and annotated two full msm operons in these genomes. Furthermore, msmA and msmE sequences were amplified from North Atlantic seawater and analyzed. Good conservation of the MsmA deduced protein sequence was observed in both cultured strains and metagenomic clones. A long spacer sequence in the Rieske-type [2Fe-2S] cluster-binding motif within MsmA was found to be conserved in all instances, supporting the hypothesis that this feature is specific to the large (α) subunit of the MSAMO enzyme. The msmE gene was more difficult to amplify, from both cultivated isolates and marine metagenomic DNA. However, 3 novel msmE sequences were obtained from isolated strains and one directly from seawater. With both genes, our results combined with previous metagenomic analyses seem to imply that moderate to high-GC strains are somehow favored during enrichment and isolation of MSA-utilizing bacteria, while the majority of msm genes obtained by cultivation-independent methods have low levels of GC%, which is a clear example of the misrepresentation of natural populations that culturing, more often than not, entails. Nevertheless, the data obtained in this work show that MSA-degrading bacteria are abundant in surface seawater, which suggests ecological relevance for this metabolic group of bacteria. [ABSTRACT FROM AUTHOR]

Cite

CITATION STYLE

APA

Henriques, A. C., & De Marco, P. (2015). Methanesulfonate (MSA) catabolic genes from marine and estuarine bacteria. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0125735

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free