Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar)

25Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

The objective of this study was to determine the underlying physiological and molecular responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar) parr. Previous studies have predominately focused on mechanisms during acute, short-term exposure. For that purpose Atlantic salmon parr were exposed to four ammonia concentrations between 4 and 1800μmoll-1 total ammonia nitrogen (TAN), and subjected to two feeding regimes for 15 weeks. Elevated environmental ammonia and full feeding strength caused an initial increase in plasma ammonia levels ([Tamm]) after 22 days of exposure, which thereafter declined and remained similar to the control animals towards the end of the study. On the other hand, a progressive decrease in plasma urea levels was evident throughout the entire exposure period and depended on the concentration of environmental ammonia, with the largest decrease in urea levels observed at the highest ammonia concentrations (1700 and 1800μmoll-1 TAN). We hypothesized that the successful adaptation to long-term elevated ammonia levels would involve an increased capacity for carrier-facilitated branchial excretion. This hypothesis was strengthened by the first evidence of an up-regulation of branchial transcription of the genes encoding the Rhesus (Rh) glycoproteins, Rhcg1 and Rhcg2, urea transporter (UT) and aquaporin 3a (Aqp3a), during long-term exposure. Of the Rhesus glycoprotein (Rh) mRNAs, Rhcg1 was up-regulated at all tested ammonia levels, while Rhcg2 showed a concentration-sensitive increase. Increased transcription levels of V-type H+-ATPase (H+-ATPase) were observed at the highest ammonia concentrations (1700 and 1800μmoll-1 TAN) and coincided with an up-regulation of Rhcg2 at these concentrations. Transcription of UT and Aqp3a was increased after 15 weeks of exposure to low ammonia levels (470 and 480μmoll-1 TAN). A significant increase in brain glutamine (Gln) concentration was observed for full fed Atlantic salmon after 22 days and in fish with restricted feeding after 105 days of exposure to 1800 and 1700μmoll-1 TAN, respectively, without any concomitant decrease in brain glutamate (Glu) concentrations. These results suggest that Gln synthesis is an ammonia detoxifying strategy employed in the brain of Atlantic salmon parr during long-term sublethal ammonia exposure. Full feed strength had an additive effect on plasma [Tamm], while the restricted feeding regime postponed the majority of the observed physiological and molecular responses. In conclusion, Atlantic salmon parr adapts to the long-term sublethal ammonia concentrations with increased branchial transcription levels of ammonia and urea transporting proteins and ammonia detoxification in the brain. © 2012 Elsevier B.V.

Cite

CITATION STYLE

APA

Kolarevic, J., Takle, H., Felip, O., Ytteborg, E., Selset, R., Good, C. M., … Terjesen, B. F. (2012). Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar). Aquatic Toxicology, 124125, 48–57. https://doi.org/10.1016/j.aquatox.2012.07.003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free