Motion detection in diffusion MRI via online ODF estimation

0Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

The acquisition of high angular resolution diffusion MRI is particularly long and subject motion can become an issue. The orientation distribution function (ODF) can be reconstructed online incrementally from diffusion-weighted MRI with a Kalman filtering framework. This online reconstruction provides real-time feedback throughout the acquisition process. In this article, the Kalman filter is first adapted to the reconstruction of the ODF in constant solid angle. Then, a method called STAR (STatistical Analysis of Residuals) is presented and applied to the online detection of motion in high angular resolution diffusion images. Compared to existing techniques, this method is image based and is built on top of a Kalman filter. Therefore, it introduces no additional scan time and does not require additional hardware. The performance of STAR is tested on simulated and real data and compared to the classical generalized likelihood ratio test. Successful detection of small motion is reported (rotation under 2°) with no delay and robustness to noise. © 2013 Emmanuel Caruyer et al.

Cite

CITATION STYLE

APA

Caruyer, E., Aganj, I., Lenglet, C., Sapiro, G., & Deriche, R. (2013). Motion detection in diffusion MRI via online ODF estimation. International Journal of Biomedical Imaging, 2013. https://doi.org/10.1155/2013/849363

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free