Multidimensional Data Exploration by Explicitly Controlled Animation

  • Kruiger J
  • Hassoumi A
  • Schulz H
  • et al.
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Understanding large multidimensional datasets is one of the most challenging problems in visual data exploration. One key challenge that increases the size of the exploration space is the number of views that one can generate from a single dataset, based on the use of multiple parameter values and exploration paths. Often, no such single view contains all needed insights. The question thus arises of how we can efficiently combine insights from multiple views of a dataset. We propose a set of techniques that considerably reduce the exploration effort for such situations, based on the explicit depiction of the view space, using a small multiple metaphor. We leverage this view space by offering interactive techniques that enable users to explicitly create, visualize, and follow their exploration path. This way, partial insights obtained from each view can be efficiently and effectively combined. We demonstrate our approach by applications using real-world datasets from air traffic control, software maintenance, and machine learning.

Cite

CITATION STYLE

APA

Kruiger, J., Hassoumi, A., Schulz, H.-J., Telea, A., & Hurter, C. (2017). Multidimensional Data Exploration by Explicitly Controlled Animation. Informatics, 4(3), 26. https://doi.org/10.3390/informatics4030026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free