Multi-drug-resistant Staphylococcus aureus and future chemotherapy

167Citations
Citations of this article
438Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Staphylococcus (S.) aureus silently stays as our natural flora, and yet sometimes threatens our life as a tenacious pathogen. In addition to its ability to outwit our immune system, its multi-drug resistance phenotype makes it one of the most intractable pathogenic bacteria in the history of antibiotic chemotherapy. It conquered practically all the antibiotics that have been developed since 1940s. In 1961, the first MRSA was found among S. aureus clinical isolates. Then MRSA prevailed throughout the world as a multi-resistant hospital pathogen. In 1997, MRSA strain Mu50 with reduced susceptibility to vancomycin was isolated. Vancomycin-intermediate S. aureus (VISA), so named according to the CLSI criteria, was the product of adaptive mutation of S. aureus against vancomycin that had long been the last resort to MRSA infection. Here, we describe the genetic basis for the remarkable ability of S. aureus to acquire multi-antibiotic resistance, and propose a novel paradigm for future chemotherapy against the multi-resistant pathogens.

Cite

CITATION STYLE

APA

Hiramatsu, K., Katayama, Y., Matsuo, M., Sasaki, T., Morimoto, Y., Sekiguchi, A., & Baba, T. (2014, October 1). Multi-drug-resistant Staphylococcus aureus and future chemotherapy. Journal of Infection and Chemotherapy. Japanese Society for Cancer Chemotherapy. https://doi.org/10.1016/j.jiac.2014.08.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free