Multiple vehicle cooperative localization with spatial registration based on a probability hypothesis density filter

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

This paper studies the problem of multiple vehicle cooperative localization with spatial registration in the formulation of the probability hypothesis density (PHD) filter. Assuming vehicles are equipped with proprioceptive and exteroceptive sensors (with biases) to cooperatively localize positions, a simultaneous solution for joint spatial registration and state estimation is proposed. For this, we rely on the sequential Monte Carlo implementation of the PHD filtering. Compared to other methods, the concept of multiple vehicle cooperative localization with spatial registration is first proposed under Random Finite Set Theory. In addition, the proposed solution also addresses the challenges for multiple vehicle cooperative localization, e.g., the communication bandwidth issue and data association uncertainty. The simulation result demonstrates its reliability and feasibility in large-scale environments.

Cite

CITATION STYLE

APA

Zhang, F., Buckl, C., & Knoll, A. (2014). Multiple vehicle cooperative localization with spatial registration based on a probability hypothesis density filter. Sensors (Switzerland), 14(1), 995–1009. https://doi.org/10.3390/s140100995

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free