Novel approach to FE solution of crack problems in the Laplacian-based gradient elasticity

8Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Stress/strain concentration around a crack tip in ceramic foam-like structures, where the characteristic size of the foam cell is comparable with a typical length over which field quantities change significantly, is analysed. It is convenient to replace the foam structure by an effective continuum which retains all necessary characteristic features of the foam. To this end a homogenized cracked open cell ceramic foam is analysed using the strain/stress model based upon an implicit dependence of the non-local stress and strain on the local stress and strain in the form of an inhomogeneous Helmholtz equation which is solved together with the equilibrium equations. To preserve the advantage of the uncoupled system of equations, which means that one set of equations is solved prior the other one and that two sets of shape functions can be chosen independently, a recurrent sequence of well posed boundary value problems is constructed which can be solved using a classical 8-nodes isoparametric element for 2-D problems. The key idea behind the suggested procedure consists in replacing the scale parameter l by a parameter increment Δl chosen arbitrarily small. The given small disturbance causes a redistribution of the local stress/displacement field. After the new local stress/displacement field is known, another disturbance is introduced and so on. The procedure is stopped when the solution, exhibiting boundary layer behaviour, leads to the cohesive-like zone with length reaching a value uniquely related to the scale parameter l.

Cite

CITATION STYLE

APA

Skalka, P., Navrátil, P., & Kotoul, M. (2016). Novel approach to FE solution of crack problems in the Laplacian-based gradient elasticity. Mechanics of Materials, 95, 28–48. https://doi.org/10.1016/j.mechmat.2015.12.007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free