Novel sedimentological fingerprints link shifting depositional processes to Holocene climate transitions in East Greenland

29Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Arctic warms faster than any other region of our planet. Besides melting glaciers, thawing permafrost and decreasing sea-ice, this amplified response affects earth surface processes. This geomorphological expression of climate change may alter landscapes and increase the frequency and magnitude of geohazards like floods or mass-movements. Beyond the short span of sparse monitoring time series, geological archives provide a valuable long-term context for future risk assessment. Lake sediment sequences are particularly promising in this respect as continuous recorders of surface process change. Over the past decade, the emergence of new techniques that characterize depositional signatures in more detail has enhanced this potential. Here, we present a well-dated Holocene-length lake sediment sequence from Ammassalik Island on southeast Greenland. This area is particularly sensitive to regional shifts in the Arctic climate system due to its location near the sea-ice limit, the Greenland Ice Sheet and the convergence of polar and Atlantic waters. The expression of Holocene change is fingerprinted using physical (grain size, organic content, density), visual (3-D Computed Tomography) and geochemical (X-Ray Fluorescence, X-Ray Diffraction) evidence. We show that three sharp transitions characterize the Holocene evolution of Ymer Lake. Between 10 and 9.5 cal. ka BP, rapid local glacier loss from the lake catchment culminated in an outburst flood. Following a quiescent Holocene climatic optimum, Neoglacial cooling, lengthening lake ice cover and shifting wind patterns prompted in-lake avalanching of sediments from 4.2 cal. ka BP onwards. Finally, glaciers reformed in the catchment around 1.2 cal. ka BP. The timing of these shifts is consistent with the regional expression of deglaciation, Neoglacial cooling and Little Ice Age-type glacier growth, respectively. The novel multi-proxy approach applied in this study rigorously links depositional sediment signatures to surface processes and thereby provides a key step towards a process-based understanding of climate responses.

Cite

CITATION STYLE

APA

van der Bilt, W. G. M., Rea, B., Spagnolo, M., Roerdink, D. L., Jørgensen, S. L., & Bakke, J. (2018). Novel sedimentological fingerprints link shifting depositional processes to Holocene climate transitions in East Greenland. Global and Planetary Change, 164, 52–64. https://doi.org/10.1016/j.gloplacha.2018.03.007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free