Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow

33Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

Abstract

Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P.falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size. © 2013 Xu et al.

Cite

CITATION STYLE

APA

Xu, X., Efremov, A. K., Li, A., Lai, L., Dao, M., Lim, C. T., & Cao, J. (2013). Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0064763

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free