Protonated form: The potent form of potassium-competitive acid blockers

Citations of this article
Mendeley users who have this article in their library.


Potassium-competitive acid blockers (P-CABs) are highly safe and active drugs targeting H+,K+-ATPase to cure acid-related gastric diseases. In this study, we for the first time investigate the interaction mechanism between the protonated form of P-CABs and human H+,K+-ATPase using homology modeling, molecular docking, molecular dynamics and binding free energy calculation methods. The results explain why P-CABs have higher activities with higher pKa values or at lower pH. With positive charge, the protonated forms of P-CABs have more competitive advantage to block potassium ion into luminal channel and to bind with H+,K+-ATPase via electrostatic interactions. The binding affinity of the protonated form is more favorable than that of the neutral P-CABs. In particular, Asp139 should be a very important binding site for the protonated form of P-CABs through hydrogen bonds and electrostatic interactions. These findings could promote the rational design of novel P-CABs.




Luo, H. J., Deng, W. Q., & Zou, K. (2014). Protonated form: The potent form of potassium-competitive acid blockers. PLoS ONE, 9(5).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free