Reduced Genome of the Thioautotrophic Intracellular Symbiont in a Deep-Sea Clam, Calyptogena okutanii

101Citations
Citations of this article
111Readers
Mendeley users who have this article in their library.

Abstract

Although dense animal communities at hydrothermal vents and cold seeps rely on symbioses with chemoautotrophic bacteria [1, 2], knowledge of the mechanisms underlying these chemosynthetic symbioses is still fragmentary because of the difficulty in culturing the symbionts and the hosts in the laboratory. Deep-sea Calyptogena clams harbor thioautotrophic bacterial symbionts in their gill epithelial cells [1, 2]. They have vestigial digestive tracts and nutritionally depend on their symbionts [3], which are vertically transmitted via eggs [4]. To clarify the symbionts' metabolic roles in the symbiosis and adaptations to intracellular conditions, we present the complete genome sequence of the symbiont of Calyptogena okutanii. The genome is a circular chromosome of 1,022,154 bp with 31.6% guanine + cytosine (G + C) content, and is the smallest reported genome in autotrophic bacteria. It encodes 939 protein-coding genes, including those for thioautotrophy and for the syntheses of almost all amino acids and various cofactors. However, transporters for these substances to the host cell are apparently absent. Genes that are unnecessary for an intracellular lifestyle, as well as some essential genes (e.g., ftsZ for cytokinesis), appear to have been lost from the symbiont genome. Reductive evolution of the genome might be ongoing in the vertically transmitted Calyptogena symbionts. © 2007 Elsevier Ltd. All rights reserved.

Author supplied keywords

Cite

CITATION STYLE

APA

Kuwahara, H., Yoshida, T., Takaki, Y., Shimamura, S., Nishi, S., Harada, M., … Maruyama, T. (2007). Reduced Genome of the Thioautotrophic Intracellular Symbiont in a Deep-Sea Clam, Calyptogena okutanii. Current Biology, 17(10), 881–886. https://doi.org/10.1016/j.cub.2007.04.039

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free